Boosting Trading Strategies performance using VIX indicator together with a dual-objective Evolutionary Computation optimizer

نویسندگان

  • José Pinto
  • Rui Ferreira Neves
  • Nuno Horta
چکیده

In this study a Multi-Objective Evolutionary System is used to predict the future tendency of assets price. Therefore, a framework using a Multi-Objective Genetic Algorithm (GA) in its core to optimize a set of Trading or Investment Strategies (TSs) was developed. The investigated framework is used to determine potential buy, sell or hold conditions in stock markets, aiming to yield high returns at a minimal risk. The Volatility Index (VIX), indicators based on the VIX and other Technical Indicators (TI) are optimized to find the best investment strategy. Additionally, fair and established metrics are used to evaluate both the return and the linked risk of the optimized TSs. Furthermore, these strategies are evaluated in several markets using data from the main stock indexes of the most developed economies, such as: NASDAQ, S&P 500, FTSE 100, DAX 30, and also NIKKEI 225. The achieved results clearly outperform both the Buy&Hold and Sell&Hold. Additionally, the Pareto-Fronts obtained with the training data during the experiments clearly show the inherent trade-off between risk and return in financial. In this paper the option of using an adaptive approach was chosen, which led to the development of a framework able to operate continuously and with minimal human intervention. To sum up, the developed framework is able to evolve a set of TSs suitable for the diverse profiles of investors from the most risky to the most careful with interesting results, which suggests great potential in the framework generalization capabilities. The use of the VIX enables the system to increase the stock return compared to traditional Technical Indicators by avoiding losses when the stress in the stock market increases. The GA enables the system to adapt to different types of markets. The algorithm achieves a return of higher than 10% annual for the period of 2006– 2014 in the NASDAQ and DAX indexes, in a period that includes the stock market crash of 2008. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge-intensive genetic discovery in foreign exchange markets

This paper considers the discovery of trading decision models from high-frequency foreign exchange (FX) markets data using genetic programming (GP). It presents a domain-related structuring of the representation and incorporation of semantic restrictions for GP-based search of trading decision models. A defined symmetry property provides a basis for the semantics of FX trading models. The symme...

متن کامل

BIBEA: Boosted Indicator Based Evolutionary Algorithm for Multiobjective Optimization

Various evolutionary multiobjective optimization algorithms (EMOAs) have replaced or augmented the notion of dominance with quality indicators and leveraged them in selection operators. Recent studies show that indicator-based EMOAs outperform traditional dominance-based EMOAs. Many quality indicators have been proposed with the intention to capture different preferences in optimization. Theref...

متن کامل

Evolutionary Learning of Technical Trading Rules without Data-Mining Bias

In this paper we investigate the profitability of evolved technical trading rules when controlling for data-mining bias. For the first time in the evolutionary computation literature, a comprehensive test for a rule’s statistical significance using Hansen’s Superior Predictive Ability is explicitly taken into account in the fitness function, and multi-objective evolutionary optimisation is empl...

متن کامل

Agent Collaboration for Multiple Trading Strategy Integration

The collaboration of agents can undertake complicated tasks that cannot be handled well by a single agent. This is even true for excecuting multiple goals at the same time. In this paper, we demonstrate the use of trading agent collaboration in integrating multiple trading strategies. Trading agents are used for developing quality trading strategies to support smart actions in the market. Evolu...

متن کامل

Convergence Analysis of Evolutionary Algorithms That Are Based on the Paradigm of Information Geometry

The convergence behaviors of so-called natural evolution strategies (NES) and of the information-geometric optimization (IGO) approach are considered. After a review of the NES/IGO ideas, which are based on information geometry, the implications of this philosophy w.r.t. optimization dynamics are investigated considering the optimization performance on the class of positive quadratic objective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015